Prof. Dr. rer. nat. habil. Holger Schanz

Aufgabengebiete

  • Lehre in den Fachgebieten Informatik und Physik
  • Mitglied im Prüfungsausschuss des Instituts für Maschinenbau

Projekte

  • Topologische Resonanzen in quantisierten Netzwerken
  • Singularitäten in der Zeitverzögerung zweidimensionaler Streusysteme

Veröffentlichungen

  • Edge switching transformations of quantum graphs – a scattering approach. H. Schanz and U.Smilansky.
    Algebra i Analiz 30, 273 (2018)
  • Delay-time distribution in the scattering of time-narrow wave packets (II) — quantum graphs. U. Smilansky and H. Schanz.
    J. Phys. A 51, 075302 (2018)
  • Edge switching transformations of quantum graphs. M. Aizenman, H. Schanz, U. Smilansky and S. Warzel.
    Acta Physica Polonica A 132, 1699 (2017)
  • Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers. H. Li, S. Suwunnarat, R. Fleischmann, H. Schanz and T. Kottos.
    Phys. Rev. Lett. 118, 044101 (2017)
  • Topological Resonances in Scattering on Networks (Graphs). S. Gnutzmann, H. Schanz and U. Smilansky.
    Phys. Rev. Lett. 110, 094101 (2013)
  • Partial Weyl Law for Billiards. A. Bäcker, R. Ketzmerick, S. Löck and H. Schanz.
    Europhys. Lett. 94, 30004 (2011)
  • Self-pulsed electron transmission through a finite waveguide in a transversal magnetic field. M. Prusty and H. Schanz.
    Phys. Rev. Lett. 98 (2007) 176804.
  • Rate of energy absorption by a closed ballistic ring. D. Cohen, T. Kottos and H. Schanz.
    J. Phys. A 39 (2006) 11755.
  • Signature of directed chaos in the conductance of a nanowire. M. Prusty and H. Schanz.
    Phys. Rev. Lett. 96 (2006) 130601.
  • Wave packet dynamics and chaotic eigenstates. H. Schanz in H. Malchow, T. Pöschel and L. Schimannsky-Geier (Eds.).
    Irreversible Prozesse und Selbstorganisation, Logos, Berlin (2006).
  • A relation between bond-scattering matrix and number counting function for quantum graphs. H. Schanz in G. Berkolaiko et al. (Eds.).
    Quantum Graphs and Their Applications, Contemporary Mathematics 415, AMS (2006).
  • Directed chaos in a billiard chain with transversal magnetic field. H. Schanz and M. Prusty.
    J. Phys. A 38 (2005) 10085.
  • Phase-space correlations of chaotic eigenstates. H. Schanz.
    Phys. Rev. Lett. 94 (2005) 134101.
  • Quantum decay of an open chaotic system: a semiclassical approach. M. Puhlmann, H. Schanz, T. Kottos and T. Geisel.
    Europhys. Lett. 69 (2005) 313.
  • Directed Chaotic Transport in Hamiltonian Ratchets. H. Schanz, T. Dittrich and R. Ketzmerick.
    Phys. Rev. E 71 (2005) 026228.
  • Quantum pumping: The charge transported due to a translation of a scatterer. D. Cohen, T. Kottos and H. Schanz.
    Phys. Rev. E 71 (2005) 035202(R).
  • Hamiltonsche Ratschen: Antrieb durch Chaos.
    H. Schanz.
    Beitrag zum Jahrbuch 2004 der Max-Planck-Gesellschaft.
  • Quantum chaos: from minimal models to universality.
    H. Schanz.
    Habilitationsschrift (2004).
  • Statistical properties of resonance widths for open quantum graphs.
    T. Kottos and H. Schanz.
    Waves in Random Media 14 (2004) S91.
  • Shot noise in chaotic cavities from action correlations.
    H. Schanz, M. Puhlmann and T. Geisel.
    Phys. Rev. Lett. 91 (2003) 134101.
  • Scars on quantum networks ignore the Lyapunov exponent.
    H. Schanz and T. Kottos.
    Phys. Rev. Lett. 90 (2003) 234101.
  • Reaction matrix for Dirichlet billiards with attached waveguides.
    H. Schanz.
    Physica E 18 (2003) 429.
  • Form factor for a family of quantum graphs: an expansion to third order.
    G. Berkolaiko, H. Schanz and R. S. Whitney.
    J. Phys. A 36 (2003) 8373.
  • Eigenstates ignoring regular and chaotic phase-space structures.
    L. Hufnagel, R. Ketzmerick, M. F. Otto and H. Schanz.
    Phys. Rev. Lett. 89 (2002) 154101.
  • Leading off-diagonal correction to the form factor of large graphs.
    G. Berkolaiko, H. Schanz and R. S. Whitney.
    Phys. Rev. Lett. 88 (2002) 104101.
  • Combinatorial identities from the spectral theory of quantum graphs.
    H. Schanz and U. Smilansky.
    The Electronic Journal of Combinatorics 8 (2001) R16.
  • Classical and quantum Hamiltonian ratchets.
    H. Schanz, M. F. Otto, R. Ketzmerick and T. Dittrich.
    Phys. Rev. Lett. 87 (2001) 070601.
  • Effective coupling for open billiards.
    K. Pichugin, H. Schanz and P. Seba.
    Phys. Rev. E 64 (2001) 056227.
  • Quantum graphs: a model for quantum chaos.
    T. Kottos and H. Schanz.
    Physica E 9 (2001) 523.
  • Spectral signatures of chaotic diffusion in systems with and without spatial order.
    T. Dittrich, B. Mehlig and H. Schanz.
    Physica E 9 (2001) 494.
  • Spectral statistics for quantum graphs: Periodic orbits and combinatorics.
    H. Schanz and U. Smilansky.
    Phil. Mag. B 80 (2000) 1999.
  • Periodic-orbit theory of Anderson localization on graphs.
    H. Schanz and U. Smilansky.
    Phys. Rev. Lett. 84 (2000) 1427.
  • Classical and quantum transport in deterministic Hamiltonian ratchets.
    T. Dittrich, R. Ketzmerick, M. F. Otto and H. Schanz.
    Ann. Phys.-Berlin 9 (2000) 755.
  • Spectral statistics in chaotic systems with two identical, connected cells.
    T. Dittrich, G. Koboldt, B. Mehlig and H. Schanz.
    J. Phys. A 32 (1999) 6791.
  • Spectral correlations in systems undergoing a transition from periodicity to disorder.
    T. Dittrich, B. Mehlig, H. Schanz, U. Smilansky, P. Pollner and G. Vattay.
    Phys. Rev. E 59 (1999) 6541.
  • Excitonic-vibronic coupled dimer: Separatrix structure, regular and chaotic behavior of the semiclassical dynamics versus full-quantum evolution.
    B. Esser and H. Schanz.
    J. Lumin., 76-77 (1998) 530.
  • Signature of chaotic diffusion in band spectra.
    T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
    Phys. Rev. E 57 (1998) 359.
  • Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system.
    H. Schanz and B. Esser.
    Phys. Rev. A 55 (1997) 3375.
  • Transfer and decay of an exciton coupled to vibrations in a dimer.
    H. Schanz, I. Barvik and B. Esser.
    Phys. Rev. B 55 (1997) 11308.
  • Penumbra diffraction in the semiclassical quantization of concave billiards.
    H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
    J. Phys. A 30 (1997) 6693.
  • Universal spectral properties of spatially periodic quantum systems with chaotic classical dynamics.
    T. Dittrich, B. Mehlig, H. Schanz and U. Smilansky.
    Chaos Solitons & Fractals 8 (1997) 1205.
  • Investigation of Two Quantum Chaotic Systems.
    H. Schanz.
    PhD thesis, Humboldt Universität Berlin, 1996.
  • Nonadiabatic couplings and incipience of quantum chaos.
    H. Schanz and B. Esser.
    Z. Phys. B 101 (1996) 299.
  • Penumbra diffraction in the quantization of dispersing billiards.
    H. Primack, H. Schanz, U. Smilansky and I. Ussishkin.
    Phys. Rev. Lett. 76 (1996) 1615.
  • Nonlinear properties of energy transfer in molecular aggregates coupled to a vibrational environment.
    B. Esser and H. Schanz.
    In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996.
  • On finding the periodic orbits of the Sinai billiard.
    H. Schanz.
    In J. A. Freund, editor, Dynamik, Evolution, Strukturen. Verlag Dr. Köster, Berlin, 1996.
  • Quantization of Sinai's billiard - a scattering approach.
    H. Schanz and U. Smilansky.
    Chaos, Solitons & Fractals 5 (1995) 1289.
  • Semiclassical quantization of billiards with mixed boundary conditions.
    M. Sieber, H. Primack, U. Smilansky, I. Ussishkin and H. Schanz.
    J. Phys. A 28 (1995) 5041.
  • Excitonic-vibronic coupled dimers - a dynamic approach.
    B. Esser and H. Schanz.
    Z. Phys. B 96 (1995) 553.
  • Nonlinearity and trapping in excitation transfer - dimers and trimers.
    I. Barvik, B. Esser and H. Schanz.
    Phys. Rev. B 52 (1995) 9377.
  • Regular and chaotic dynamics in systems with excitonic-vibronic coupling.
    B. Esser and H. Schanz.
    Chaos Solitons & Fractals 4 (1994) 2067.
  • Irreguläre Streuung an einem Cluster nichtüberlappender Potentiale.
    H. Schanz.
    Diploma thesis, Technische Universität Dresden, 1992.
  • Statistical properties of resonances in quantum irregular scattering.
    W. John, B. Milek, H. Schanz and P. Seba.
    Phys. Rev. Lett. 67 (1991) 1949.

Werdegang

  • seit 04/2009
    Professor für Informatik und Physik am Institut für Maschinenbau der Hochschule Magdeburg-Stendal
  • 11/2006-03/2009
    Consultant im Bereich Finanzmathematik, d-fine GmbH, Frankfurt am Main
  • 02/2000-10/2006 wissenschaftlicher Assistent am Institut für nichtlineare Dynamik der Universität Göttingen; Forschung zum Thema Wellenchaos in komplexen Systemen am Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen (Habilitation in Physik am 15. 11. 2004)
  • 04/1998-09/1998
    wissenschaftlicher Mitarbeiter an der Universität Augsburg
  • 12/1996-03/1998
    wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Physik komplexer Systeme, Dresden
  • 10/1996-11/1996
    Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel)
  • 03/1993-09/1996
    Doktorand an der Humboldt-Universität Berlin (Promotion in theoretischer Physik am 13. 12. 1996)
  • 11/1992-02/1993
    Forschungsaufenthalt am Weizmann Institute of Science, Rehovot (Israel)
  • 04/1988-09/1992 Physikstudium an der Technischen Universität Dresden
    (Diplom in Physik am 21. 9. 1992).

Kontakt

Prof. Dr. rer. nat. habil. Holger Schanz
Informatik, Physik

Tel.: (0391) 886 43 17
Fax: (0391) 886 41 23
E-Mail: holger.schanz@h2.de

Besucheradresse: Haus 10, Raum 2.09

mehr erfahren

Hintergrund Bild